SQLAlchemy 插入 性能 速度 比较

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import time
import sqlite3

from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, create_engine
from sqlalchemy.orm import scoped_session, sessionmaker

Base = declarative_base()
DBSession = scoped_session(sessionmaker())
engine = None


class Customer(Base):
__tablename__ = "customer"
id = Column(Integer, primary_key=True)
name = Column(String(255))


def init_sqlalchemy(dbname='sqlite:///sqlalchemy.db'):
global engine
engine = create_engine(dbname, echo=False)
DBSession.remove()
DBSession.configure(bind=engine, autoflush=False, expire_on_commit=False)
Base.metadata.drop_all(engine)
Base.metadata.create_all(engine)


def test_sqlalchemy_orm(n=100000):
init_sqlalchemy()
t0 = time.time()
for i in xrange(n):
customer = Customer()
customer.name = 'NAME ' + str(i)
DBSession.add(customer)
if i % 1000 == 0:
DBSession.flush()
DBSession.commit()
print(
"SQLAlchemy ORM: Total time for " + str(n) +
" records " + str(time.time() - t0) + " secs")


def test_sqlalchemy_orm_pk_given(n=100000):
init_sqlalchemy()
t0 = time.time()
for i in xrange(n):
customer = Customer(id=i+1, name="NAME " + str(i))
DBSession.add(customer)
if i % 1000 == 0:
DBSession.flush()
DBSession.commit()
print(
"SQLAlchemy ORM pk given: Total time for " + str(n) +
" records " + str(time.time() - t0) + " secs")


def test_sqlalchemy_orm_bulk_save_objects(n=100000):
init_sqlalchemy()
t0 = time.time()
n1 = n
while n1 > 0:
n1 = n1 - 10000
DBSession.bulk_save_objects(
[
Customer(name="NAME " + str(i))
for i in xrange(min(10000, n1))
]
)
DBSession.commit()
print(
"SQLAlchemy ORM bulk_save_objects(): Total time for " + str(n) +
" records " + str(time.time() - t0) + " secs")

def test_sqlalchemy_orm_bulk_insert(n=100000):
init_sqlalchemy()
t0 = time.time()
n1 = n
while n1 > 0:
n1 = n1 - 10000
DBSession.bulk_insert_mappings(
Customer,
[
dict(name="NAME " + str(i))
for i in xrange(min(10000, n1))
]
)
DBSession.commit()
print(
"SQLAlchemy ORM bulk_insert_mappings(): Total time for " + str(n) +
" records " + str(time.time() - t0) + " secs")

def test_sqlalchemy_core(n=100000):
init_sqlalchemy()
t0 = time.time()
engine.execute(
Customer.__table__.insert(),
[{"name": 'NAME ' + str(i)} for i in xrange(n)]
)
print(
"SQLAlchemy Core: Total time for " + str(n) +
" records " + str(time.time() - t0) + " secs")


def init_sqlite3(dbname):
conn = sqlite3.connect(dbname)
c = conn.cursor()
c.execute("DROP TABLE IF EXISTS customer")
c.execute(
"CREATE TABLE customer (id INTEGER NOT NULL, "
"name VARCHAR(255), PRIMARY KEY(id))")
conn.commit()
return conn


def test_sqlite3(n=100000, dbname='sqlite3.db'):
conn = init_sqlite3(dbname)
c = conn.cursor()
t0 = time.time()
for i in xrange(n):
row = ('NAME ' + str(i),)
c.execute("INSERT INTO customer (name) VALUES (?)", row)
conn.commit()
print(
"sqlite3: Total time for " + str(n) +
" records " + str(time.time() - t0) + " sec")

if __name__ == '__main__':
test_sqlalchemy_orm(100000)
test_sqlalchemy_orm_pk_given(100000)
test_sqlalchemy_orm_bulk_save_objects(100000)
test_sqlalchemy_orm_bulk_insert(100000)
test_sqlalchemy_core(100000)
test_sqlite3(100000)

上面代码分别使用了orm, orm带主键,orm的bulk_save_objects, orm的bulk_insert_mappings, 非orm形式,原生的dbapi方式;插入10000条记录的结果如下:

1
2
3
4
5
6
SQLAlchemy ORM: Total time for 100000 records 7.2070479393 secs
SQLAlchemy ORM pk given: Total time for 100000 records 4.28471207619 secs
SQLAlchemy ORM bulk_save_objects(): Total time for 100000 records 1.58296084404 secs
SQLAlchemy ORM bulk_insert_mappings(): Total time for 100000 records 0.453973054886 secs
SQLAlchemy Core: Total time for 100000 records 0.210998058319 secs
sqlite3: Total time for 100000 records 0.136252880096 sec

注意:

这里只有第一、二种方式可以拿到插入记录的id,其它都不能直接拿到,需要自己再查询一次。